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Abstract The measured 14C:12C isotopic ratio of atmospheric CO2 (and its associated derived
Δ14C value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing
to any atmospheric CO2 measurement (Cff). Given enough such measurements, independent top-down
estimation of U.S. fossil fuel CO2 emissions should be possible. However, the number of Δ14C measurements
is presently constrained by cost, available sample volume, and availability of mass spectrometer
measurement facilities. Δ14C is therefore measured in just a small fraction of samples obtained by flask
air sampling networks around the world. Here we develop a projection pursuit regression (PPR) model
to predict Cff as a function of multiple surrogate gases acquired within the NOAA/Earth System Research
Laboratory (ESRL) Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured
enhancements of various anthropogenic trace gases, including CO, SF6, and halocarbon and hydrocarbon
acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 to
2010. Model performance for these sites is quantified based on predicted values corresponding to test
data excluded from the model building process. Chi-square hypothesis test analysis indicates that these
predictions and corresponding observations are consistent given our uncertainty budget which accounts
for random effects and one particular systematic effect. However, quantification of the combined
uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range
of the observations and their relatively high fractional uncertainties at the sampling sites considered
here. To account for the possibility of additional systematic effects, we incorporate another component of
uncertainty into our budget. Expanding the number of Δ14C measurements in the NOAA GGGRN and
building new PPR models at additional sites would improve our understanding of uncertainties and
potentially increase the number of Cff estimates by approximately a factor of 3. Provided that these
estimates are of comparable quality to Δ14C-based estimates, we expect an improved determination of
fossil fuel CO2 emissions.

1. Introduction

Over the last 200 years, the amount fraction of CO2 in the atmosphere has increased from approximately
280 μmol of CO2 per mole of dry air to nearly 400 μmol of CO2 per mole of dry air [Ballantyne et al., 2012;
Etheridge et al., 1996]. (Henceforth, for the sake of brevity, we denote micromole per mole as ppm.) There is
an overwhelming scientific consensus that this increase is due primarily to fossil fuel emissions despite the
fact that about half of the CO2 produced by burning fossil fuels is absorbed by oceans and the terrestrial
biosphere [Canadell et al., 2007; Knorr, 2009; Ballantyne et al., 2012]. Although year-to-year increases in CO2

are well explained by the global average of remote atmosphere measurements, variability at shorter time
scales over large land areas is often dominated by terrestrial biosphere exchange. To fully understand the
existing array of atmospheric CO2 measurements in terms of potential sources and sinks, determinations of
CO2 enhancements due solely to combustion of fossil fuels, Cff, are essential. Currently, Cff is estimated from
inventories of fossil fuel CO2 emissions that are based on economic statistics [Gurney et al., 2009; Boden et al.,
2014]. Atmosphere-based determinations of a sufficiently large number of Cff values should enable both near
real-time monitoring of fossil fuel emissions and an independent assessment of bottom-up inventories.

Due to nuclear reactions associated with cosmic rays, 14C is continually produced in the atmosphere and then
rapidly oxidized to produce 14CO2 [Anderson et al., 1947; Lingenfelter, 1963; Suess, 1965]. Atmospheric testing
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of nuclear weapons during the 1960s nearly doubled the amount of 14CO2 in the Northern Hemisphere atmo-
sphere at one point in time [Lal and Suess, 1968]. Since then, much of this excess has been absorbed by the
oceans and biosphere. Nuclear reactors also produce 14CO2 [Yim and Caron, 2006] at spatially varying rates.
Notably, these rates are generally higher in Europe than in the U.S. [Graven and Gruber, 2011; Vogel et al., 2013].
Although the effect of nuclear reactor emissions on Cff has been assessed at CMA (Cape May, NJ) and NHA
(Portsmouth, NH) [Lehman et al., 2013], in order to develop proxy prediction models elsewhere, one must
assess nuclear reactor effects on a site-to-site basis.

Since underground fossil fuels stored in the rock reservoir were last in contact with the atmosphere hundreds
of millions years ago, and 14CO2 decays with a half-life of (5700±30) years (National Nuclear Data Center,
Brookhaven National Laboratory, www.nndc.bnl.gov), the isotopic ratio 14C:12C of CO2 produced by burning
fossil fuels is negligible and equated to zero in any analysis. To understand this point more clearly, note that
the probability that a 14C nucleus does not decay until after 100 × 10−6 years is 10−5281 given that its half-life
is 5700 years. Since CO2 contributed by nearly all other sources is in near equilibrium with the atmosphere,
a measurement of 14C:12C and its associated derived Δ14C value [Stuiver and Pollack, 1977] (note that Δ14C
corresponds to Δ in Stuiver and Pollack [1977]) enables one to determine Cff according to relatively simple
mass balance considerations [Levin et al., 2003; Levin and Karstens, 2007; Turnbull et al., 2007, 2011; Vogel et al.,
2010; Miller et al., 2012]. Approximately 5000 high precision measurements of Δ14C (with random uncertainty
approximately 0.2%) and associated derived Cff estimates (with random uncertainty approximately 1 ppm)
would enable an independent “top-down” (i.e., atmosphere-based) estimation of monthly averages of U.S.
national and regional fossil fuel CO2 emissions with random uncertainties in the 5%–10% range [Committee
on Methods for Estimating Greenhouse Gas Emissions; National Research Council, 2010; Basu et al., 2016].
However, our ability to make the necessary Δ14C measurements (e.g., several thousand per year just for
the United States) is currently constrained by cost, accessibility to accelerator mass spectrometers (AMS),
and the volume of air (approximately 2 L at standard temperature and pressure (273.15 K and 101.325 kPa)
[Lehman et al., 2013]) required to make high precision measurements of Δ14C. Thus, Δ14C is currently mea-
sured in just a small subset of air samples obtained from sampling networks (including the U.S. portion of the
NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN)). A substantial number of new Cff measure-
ments determined from eitherΔ14C or surrogate gases measurements would greatly facilitate efforts to verify
“bottom-up” inventory approaches for U.S. fossil fuel CO2 emissions.

Various studies have presented univariate proxy models for Cff based on CO [Turnbull et al., 2011; Vogel et al.,
2010]. In these studies, Cff is predicted based on interpolated measured ratios of CO:Cff. However, spatiotem-
poral extrapolation of measured ratios of CO:Cff is problematic because the relative intensity of nonfossil fuel
CO sources can vary as a complicated function of time and space. Further, CO-based proxies can be prob-
lematic because many sources of fossil fuel emissions such as vehicles with diesel engines and power plants
have very low CO emission rates. Miller et al. [2012] demonstrated that a wide range of other anthropogenic
trace gases such as SF6, and a number of halocarbon and hydrocarbon that are frequently measured in NOAA
network samples are positively correlated with observed Cff. Because of these correlations, a multivariate
proxy prediction model for Cff based on measured surrogate gases is plausible. If one could accurately predict
Cff as a function of multiple anthropogenic trace gases over broad spatiotemporal regions of the U.S., such a
prediction model could serve as proxy for aΔ14C-based measurement of Cff and expand the temporal density
of reliable Cff estimates (Δ14C-based measurements and proxy model predictions) by a factor of approximately
3 at towers and aircraft vertical profiling sites throughout North America [Sweeney et al., 2015; Andrews et al.,
2014]. In this work, we construct such a prediction model based on multiple surrogate gas measurements and
quantify its performance. To the best of our knowledge, our model is the first multivariate proxy prediction
model for Cff.

2. Methods

We develop projection pursuit regression (PPR) [Friedman and Stuetzle, 1981] prediction models based on
Δ14C-derived measurements of Cff and measured enhancements of twelve anthropogenic surrogate gases
acquired by NOAA from vertical aircraft profiles at two sites, CMA and NHA (see Figure 1 and Table 1), between
2005 and 2010. A large fraction of these measurements (between 2005 and 2009) were first presented and
analyzed in Miller et al. [2012]. The rest of the measurements were acquired between 2009 and 2010.
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Figure 1. Example vertical profiles (a) above site CMA (offshore from Cape May, NJ) from 21 February 2007 and (b) above
site NHA (offshore from Portsmouth, NH) from 10 July 2008. Black, red, and blue pluses connected with a line represent
nine air samples collected between the surface and 8 km asl, with measured mole fractions shown for CO2,CO, and
HFC-134a, respectively. Red circles represent values from the three typical altitudes where Δ14C is analyzed. Grey bars
highlight the nominal altitudes at which all gases were measured (reprinted figure from Miller et al. [2012]).

Given these Cff and surrogate gas data, we determine which trace gases to include in PPR prediction models,
as well as their complexity and form, with a statistical learning method [Hastie et al., 2008] called cross valida-
tion [Arlot and Celisse, 2010; Stone, 1974, 1977]. Following Hastie et al. [2008], we split the observed data into
model building data and test data. The model building data subset is then split into training data and valida-
tion data subsets. After fitting each candidate model to the training data, we predict Cff values corresponding
to observed values in the validation data. We select the model that minimizes the discrepancy between the
observed and predicted Cff values in the validation data. Since both the training and validation data are
involved in the model selection process, quantification of prediction model performance based on how well

Table 1. Surrogate Gases

Trace Gas index name

1 CO

2 SF6

3 HFC-134a

4 HCFC-22

5 HCFC-142b

6 C2Cl4
7 CH2Cl2
8 HFC-152a

9 C6H6

10 CH4

11 N2O

12 CFC-11

the model fits the validation data is an imperfect and
usually overly optimistic measure of how well the model
performs for new data excluded from the model building
process. To better quantify model performance for new
data, we predict Cff corresponding to test data excluded
from the model building process.

We stress that the only inputs to the PPR prediction model
are measured surrogate gas enhancements. That is, the
time and location of any surrogate gas enhancement mea-
surement are not predictors in the PPR model. Later in
this work, we discuss how possible spatial and temporal
effects such as systematic temporal variations of surrogate
gas emission rates could affect the performance of our
prediction model. Next, we present measurement models
for Cff and surrogate gas enhancements following Miller
et al. [2012].

COAKLEY ET AL. PROXY PREDICTION MODEL 7491
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2.1. Measurement Models and Data
The estimated value Cff,obs of the theoretical (true) value Cff for any sample is based, in part, on the measured
isotopic ratio of 14C and 12C, 14Robs = 14C∕12C, for that sample. Following Stuiver and Pollack [1977], we estimate
the theoretical value of Δ14C as Δobs, where

Δobs = 14Robs∕14Rstandard × Θobs − 1, (1)

and Θobs is a correction term (which depends on the measured isotopic ratio of 13C and 12C for the sample)
that accounts for systematic effects due to mass-dependent fractionation. Above, isotopic ratio estimates are
also corrected for small radioactive decay losses during the interval between acquisition and measurement
of the sample.

We model the theoretical values of Cff and surrogate gas enhancements with the simple one-dimensional
analytical framework employed by Miller et al. [2012]. In this approach, the theoretical mole fraction of a gas
at lower levels (typically at approximate altitudes of 300 m and 2200 m above sea level (asl)) is the sum of a
theoretical background plus a theoretical enhancement due to recent anthropogenic emissions of that gas
at the site of interest. Further, we assume that the theoretical background at lower levels is the same as the
theoretical background at upper levels in the relatively well-mixed free troposphere (typically 4000 m asl) and
that theoretical enhancements are 0 at upper levels. Based on these assumptions, we estimate any particu-
lar surrogate gas enhancement (i.e., an additive signal relative to a background) as the difference between
measured mole fractions at lower and upper levels of a particular sampling profile.

Following earlier work [Turnbull et al., 2007; Miller et al., 2012], we estimate Cff as Cff,obs, where

Cff,obs =
Cobs(Δobs − Δbg,obs)

Δff − Δbg,obs
− Ĉcor, (2)

where Δff = −1, and the measured values Cobs,Δobs,Δbg,obs are estimates of the unknown theoretical values
C, Δ and Δbg (see Appendix A for more details). Above, Δ is shorthand for measured Δ14C, C is shorthand
for CO2, and Ĉcor is an estimate of small contributions to the tropospheric 14C budget that may influence the
measured enrichment or depletion relative to background. These contributions include the heterotrophic
respiration return flux of 14C typically photosynthetically assimilated a decade or two ago when atmospheric
14CO2 was higher than it is today. To be consistent with Miller et al. [2012], Ĉcor neglects possible point source
emissions of 14CO2 from nuclear power plants.

Any particular measurement of Cff is affected by both random and systematic measurement errors. Following
Miller et al. [2012] and Lehman et al. [2013], we estimate the random uncertainty of any Cff measurement as
�̂�obs,ran = 1 ppm. The majority of this uncertainty (0.9 ppm) is due to the random uncertainty in each Δ14C
measurement.

We assume that each Cff measurement has a bias (systematic error) due to imperfect modeling of back-
grounds, imperfect modeling of the transport of emissions associated with heterotrophic respiration, and
neglecting the effect of nuclear power plants on Cff. These systematic errors vary from observation to obser-
vation. Based on previous analysis [Miller et al., 2012; Lehman et al., 2013], we estimate the standard deviation
of the systematic error for Cff measurements, �̂�obs,sys, to be 0.5 ppm. We estimate the combined uncertainty

for any Cff measurement as �̂�obs,tot =
√

�̂�2
obs,ran + �̂�2

obs,sys =1.1 ppm.

The high variability of the Cff,obs time series (Figure 2) is expected, in part, because of spatial variation of emis-
sions and their ratios [Miller et al., 2012], temporal variation of wind directions, and associated gas transport,
and the variations in altitude where data are acquired. In particular, measured Cff values at approximately
2200 m asl are typically low and have large fractional uncertainties because the altitude of the boundary
between the free troposphere and the PBL fluctuates about 2200 m asl. In Figure 3, we show scatterplots
of Cff,obs and those surrogate gas enhancements selected by at least one of the four PPR prediction models
that we study. Although only CO, NMHCs, and CH4 are potentially coemitted with CO2 during fossil fuel
combustion, enhancements of these and other surrogate gases are positively correlated with Cff,obs since emis-
sions are strongly correlated over the broad spatiotemporal regions to which our air samples are sensitive
[Miller et al., 2012].
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Figure 2. Observed Cff time series. We split the data into a model building part and a test part. The model building
part is further split into training and validation data for model selection. For case A, the test data correspond to data
acquired before the time associated with the first dashed line. For case B, the test data correspond to data acquired
between the two solid lines. For case C, the test data correspond to data acquired after the second dashed line.
For case D, every third observation is in the test data.

2.2. Cff Prediction Model
The PPR model prediction of Cff is Cff,pred where

Cff,pred =
M∑

m=1

gm(wm ⋅ X), (3)

where gm is the mth ridge function, M is the total number of ridge functions, X is a multivariate surrogate gas
measurement vector with dimension K , and wm is a K-dimensional direction vector. Given the mathematical
form of the ridge functions, the M direction vectors are estimated from the data. (Logan and Shepp [1975]
introduced the term “ridge function” to describe a multivariate function q that maps a n-dimensional real
vector X into a real scalar q(e ⋅ X) where e is a direction vector in Rn (n-dimensional Euclidean space) and e ⋅ X
is the inner product of e and X .) A ridge function varies only along the direction e. In our study, the number of
surrogate gases K included in the model, the mathematical form of each ridge function, and the number of
ridge functions M are determined by cross validation. In particular, we consider PPR models where the number
of ridge functions varies from 1 to 4, and where each ridge function is either a smoothing spline [Craven
and Wahba, 1979; Wahba, 1990] with an adjustable effective degrees of freedom (ed.f.) or a supersmoother
[Friedman, 1984]. PPR is attractive because of its flexibility; any function can in principle be represented with a
PPR model [Diaconis and Shahshahani, 1984]. In contrast, simpler multivariate linear models can not in general
represent any function. However, for observed data affected by both random and systematic measurement
errors, selecting the form and complexity of the optimal PPR model is nontrivial.

Before constructing a PPR model from any set of model building data, we center and scale measurements
for each surrogate gas in the training data by subtracting its sample mean from each measurement and then
dividing by the estimated standard deviation of the measurements. The validation data and test data are
centered and scaled in exactly the same way.
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Figure 3. Scatterplots of Δ14C-based measurements of Cff and measured surrogate gas enhancements selected for
inclusion in a PPR prediction model for at least one of the four cases. Above, ppb and ppt denote mole fractions equal
to 10−9 and 10−12, respectively.

2.3. Model Selection
Given the number of surrogate gases in the PPR model, we select the optimal combination of the 12 candi-
date surrogate gases (Table 1) by six-fold cross-validation—an implementation of the K-fold cross-validation
method [Hastie et al., 2008]. Every sixth observation of the model building data is assigned to the validation
data set. The other observations in the model building data are assigned to the training data set. For each
of the six distinct ways to split the model building data into training and validation subsets, we determine a
candidate PPR model from the training data and predict Cff values for the validation data set. For each of the
six distinct splits of the model building data, we determine the mean-squared difference between measured
and predicted Cff for the validation data. The square root of the mean of these six values is the cross-validation
statistic (Table 2). We select the identity of the surrogate gases by minimizing this cross-validation statistic
(Figure 4). (Since the model building data is different for each of the four cases, variations in both the number
and identity of selected surrogate gases as well as the selected ed.f. of the ridge functions in the PPR model
are expected (Table 2).) We select the optimal linear multivariate model and the optimal linear single proxy
model according to the same cross-validation method described above.

For the data considered here, a PPR model with two ridge functions, where each has a smoothing spline form,
works best according to cross-validation. In our study, for each distinct combination of candidate surrogate
gases, we vary the effective degrees of freedom (ed.f.) of the ridge functions on a grid. For any particular choice
of surrogate gases, the optimal ed.f. value yields the minimum cross-validation statistic. We set the maxi-
mum value of ed.f. equal to 3 to encourage smooth ridge functions and impose regularity on the predictions.

COAKLEY ET AL. PROXY PREDICTION MODEL 7494
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Table 2. Selected Surrogate Gases for PPR Prediction Model and Observed RMS Deviation
(Observed-Predicted) for Training and Validation Dataa

RMS Deviation RMS Deviation Selected Selected ed.f.

CASE Training Data (ppm) Validation Data (ppm) Gases of Ridge Functions

A 0.927 1.012 (2, 3, 4, 5, 9, 11) 2.82

B 1.027 1.081 (1, 3, 4, 6, 9) 2.95

C 1.079 1.106 (4, 6, 7, 9, 11) 2.66

D 1.051 1.096 (4, 6, 9) 2.90
aFor each of the four cases, we select a corresponding optimal PPR model by minimizing

our cross-validation statistic which is the estimated root-mean-square deviation between
predicted and observed values in the validation data (third column in this table).

In our analysis, the number of surrogate gases in a candidate subset varies from two to six. For subsets of
size seven or larger, the PPR model had convergence problems. In particular, for a subset with seven or more
surrogate gases, the resulting cross-validation statistic was sensitive to the order of surrogate gases in the
R code [R Development Core Team, 2013] implementation of the PPR method. However, for subsets of size six
or less, the variation of results due to the order of the gases was very slight.

2.4. Analysis
We quantify how well the PPR model determined from model building data predicts test data that are inde-
pendent of the model building data for four cases (Figure 2). In case A, the test data are the first third of the
Cff,obs time series. In case B, the test data are the middle third of the time series. In case C, the test data are the
last third of the time series. In case D, the test data include every third observation in the time series. For cases
B and D, we make slight adjustments so that the test data have the same number of observations as cases
A and C.

For each case, we estimate the uncertainty of the selected model, 𝜎pred,post, with a bootstrap method [Efron
and Tibshirani, 1993] (see Appendix C for details). Neglecting the uncertainty associated with model selec-
tion methods leads to overly optimistic uncertainty estimates [Burnham and Anderson, 2002; Claeskens and
Hjort, 2008; Hoeting et al., 1999; Hjort and Claeskens, 2003]. Therefore, we estimate an additional compo-
nent of uncertainty, 𝜎pred,model, that accounts for imperfection in our model selection method. In particular,
our estimate �̂�pred,model is the estimated standard deviation of the predictions corresponding to the optimal

Figure 4. For case B, we show cross-validation statistics corresponding
to optimal multivariate linear model and the optimal nonlinear
projection pursuit regression models as a function of the number of
surrogate gases in the prediction model.

2-gas, 3-gas, 4-gas, 5-gas, and 6-gas PPR
models selected by cross validation. Our
provisional estimate of the combined
uncertainty of the PPR model predic-
tion is

�̂�pred,tot =
√

�̂�2
pred,post + �̂�2

pred,model. (4)

Based on equation (4), we estimate the
combined uncertainty of any deviation as

�̂�dev,tot =
√

�̂�2
obs,ran + �̂�2

obs,sys + �̂�2
pred,tot.

(5)

Given �̂�dev,tot, we test the hypothesis
that the expected difference (deviation)
between Cff,obs and Cff,pred is 0 ppm
based on a chi-square test statistic. To
complement the hypothesis test analy-
sis, for each test data set, we estimate
a trend (and an associated confidence
band) in the deviation (Cff,pred −Cff,obs) as
a function of Cff,pred with a nonparamet-
ric smoothing method.
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Figure 5. For case C the selected gases for the projection pursuit regression model are HFC-22, C2Cl4,CH2Cl2,C6H6,
and N2O. The direction vectors for the two ridge functions are w1 = (0.937, 0.118,−0.152, 0.277,−0.094) and
w2 = (−0.903, 0.311,−0.028, 0.181, 0.232, ). (a) First ridge function (solid line) and observed Cff. (b) Second ridge
function (solid line) and residual about first ridge function (observed Cff minus first ridge function). (c) Scatterplot
of projections of surrogate gas measurements, (d) observed versus predicted Cff, and line of equality. Prediction is
sum of the two ridge functions.

To illustrate the PPR approach, we show the two ridge functions for case C (Figure 5) corresponding to the
selected PPR model determined from the model building data. Given the first estimated direction vector w1

and associated ridge function, we form residuals (observation ridge function) and show how well the second
ridge function predicts these residuals. The PPR model prediction is the sum of the two ridge functions.

3. Results and Discussion
3.1. Prediction Model Uncertainty
In Figures 6a–6c we show how �̂�pred,post, �̂�pred,model, and �̂�pred,tot vary with predicted Cff for case D. As dis-
cussed later in section 3.3, we expect �̂�pred,post to generally increase as Cff,pred increases to large values because
random prediction uncertainties for extreme values of Cff are expected to be larger than random prediction
uncertainties corresponding to midrange values. The approximate j-shaped variation of �̂�pred,post with pre-
dicted Cff is consistent with this expectation (Figure 6a). More specifically, for Cff,pred greater than 0.5 ppm,
�̂�pred,post generally increases as Cff,pred increases. For Cff,pred less than 0.5 ppm, �̂�pred,post generally increases as
Cff,pred decreases. Similar remarks apply to �̂�pred,tot. For cases A–D, the 0.16, 0.5 and 0.84 the quantiles of the
empirical distribution of �̂�pred,tot are (0.27, 0.33, 0.49) ppm, (0.14, 0.21, 0.39) ppm, (0.17, 0.22, 0.37) ppm, and
(0.15, 0.22, 0.49) ppm. Because of the j-shaped dependence of �̂�pred,tot on Cff,pred, one should interpret the
empirical quantiles of �̂�pred,tot determined from all the test data with caution.

COAKLEY ET AL. PROXY PREDICTION MODEL 7496
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Figure 6. Components and combined components of uncertainty of predicted Cff as a function of predicted Cff for

case D. (a) �̂�pred,post. (b) �̂�pred,model. (c)
√

�̂�2
pred,post

+ �̂�2
pred,model

. (d)
√

�̂�pred,post + �̂�2
pred,model

+ �̂�2
pred,extra

, where

�̂�pred,extra=1 ppm. The dashed horizontal reference line corresponds to 1.1 ppm. Results for the cases A–C are similar.

3.2. Model Performance
A standard way to quantify prediction model performance is to estimate the square root of the mean-squared
(RMS) deviation between observed and predicted values (see Appendix B for mathematical details). The esti-
mated RMS deviation between predicted and observed Cff for all observations in the test data ranges from
1.06 ppm to 1.37 ppm for the four distinct definitions of the test data considered (Table 3). As expected,
estimated RMS deviations determined from all observations in the test data are larger than corresponding
RMS deviations determined for the model building data. For all four ways of defining the test data, the
estimated RMS deviation for the subset Cff,pred >2 ppm is larger than the estimated RMS deviation for the
subset Cff,pred ≤2 ppm (Table 3). Uncertainties for individual deviations are also larger, in general, for the
Cff,pred >2 ppm subset (Figure 7). As discussed later in section 3.3, one expects the random uncertainty of
any prediction model to be higher for extreme Cff values relative to random uncertainties for midrange Cff

values. This may explain why estimated RMS deviations are larger for the Cff,pred >2 ppm subset compared
to the Cff,pred ≤2 ppm subset. Additionally, physical effects could contribute to inflation of RMS deviations.
For instance, RMS deviations may be larger for Cff,pred >2 ppm due to incomplete mixing of local emissions
at measurement sites which would create systematic errors in Δgas:Cff (Δgas is shorthand for surrogate gas
enhancement) ratios for larger Cff values.

Although a useful performance metric, the RMS deviation statistic does not quantify the uncertainty of the
PPR model prediction for any particular observation. Further, the RMS deviation statistic does not inform us
if the predicted values are consistent with observations given measurement and prediction uncertainties.
To determine if predictions are consistent with observations, we test the null hypothesis that the expected
value of the difference between observed and predicted Cff is 0 ppm given our estimates of measurement
and prediction uncertainties. For each of the four cases, we determine a chi-square goodness-of-fit statistic

𝜒2
obs =

∑
i

(Cff,pred(i) − Cff,obs(i))2

�̂�2
dev,tot(i)

, (6)

COAKLEY ET AL. PROXY PREDICTION MODEL 7497
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Table 3. For the PPR Model, Estimates and Approximate 95% Bootstrap Confidence Intervals for the Root-Mean-Square
Value of Cff,pred − Cff,obs for Selected Subsets of Both Model Building and Test Data for Four Casesa

Subset Case A Case B Case C Case D

Model Building Data

Ĉff,PPR < 2 ppm 0.87 (0.78, 0.97) 0.99 (0.89, 1.12) 1.04 (0.92, 1.18) 0.98 (0.86, 1.13)

Ĉff,PPR ≥ 2 ppm 1.11 (0.89, 1.42) 1.18 (0.88, 1.59) 1.28 (0.98, 1.66) 1.31 (1.04, 1.66)

All data 0.93 (0.84, 1.05) 1.03 (0.93, 1.18) 1.09 (0.98, 1.22) 1.06 (0.95,1.20)

November to February 0.97 (0.78, 1.23) 0.85 (0.68, 1.17) 0.94 (0.77, 1.15) 0.89 (0.70, 1.14)

May to September 0.95 (0.80, 1.14) 1.14 (0.99, 1.35) 1.22 (1.01, 1.45) 1.19 (1.02, 1.41)

Test Data

Ĉff,PPR < 2 ppm 1.25 (1.06, 1.49) 0.94 (0.82, 1.10) 0.98 (0.86, 1.12) 0.95 (0.83, 1.08)

Ĉff,PPR ≥ 2 ppm 1.73 (1.31, 2.68) 1.39 (1.03, 1.87) 1.41 (0.94, 2.29) 1.51 (1.11,2.09)

All data 1.37 (1.19, 1.66) 1.06 (0.93, 1.25) 1.07 (0.93, 1.31) 1.12 (0.97, 1.35)

November to February 1.09 (0.90, 1.33) 1.06 (0.76, 1.45) 0.95 (0.63, 1.39) 1.23 (0.75, 2.18)

May to September 1.51 (1.24, 2.03) 1.11 (0.89, 1.44) 1.15 (0.96, 1.48) 1.13 (0.92, 1.36)
aIn case A, test data are first third of time series. In case B, test data are middle third of time series. In case C, test data

are last third of time series. In case D, every third observation is in the test data. Results are in units of μmol/mol (ppm).
In this study, �̂�pred,extra = 0.

Figure 7. Deviations (predicted-observed) versus predicted Cff for test data. (a) Case A. (b) Case B. (c) Case C.
(d) Case D. For each deviation, Cff,pred − Cff,obs, we show an associated approximate 68% confidence interval
(Cff,pred − Cff,obs − �̂�dev,tot, Cff,pred − Cff,obs + �̂�dev,tot). Solid and dashed lines correspond to trend estimates and
associated approximate 95% confidence bands. For cases A–D, the confidence band for the trend estimates
includes 0 ppm for the following fraction of observations: 0.71, 1, 1 and 1. Above, �̂�pred,extra =0 ppm.
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Table 4. Chi-Square Goodness-of-Fit Statistic 𝜒2
obs

(Equation (6)), Degrees
of Freedom (d.f.), and Associated P-values for Testing the Hypothesis That
the Observed and Predicted Test Data Are Consistent

Case 𝜒2
obs

d.f. p-value

Cape May, NJ Data

Case A 71.5 56 0.08

Case B 43.5 58 0.92

Case C 42.3 47 0.67

Case D 46.3 51 0.66

Portsmouth, NH Data

Case A 38.6 38 0.44

Case B 29.0 36 0.79

Case C 34.7 47 0.91

Case D 27.5 43 0.97

All Data

Case A 110.1 94 0.12

Case B 72.5 94 0.95

Case C 77.1 94 0.90

Case D 73.7 94 0.94

and an associated p-value (Table 4). When the chi-square test statistic is determined from all 94 observations
in each test data set, the p-values for cases A–D are 0.12, 0.95, 0.90, and 0.94, respectively. Since these p-values
are high, the evidence for rejecting the null hypothesis is weak.

As a further check of the consistency of the prediction model with observations, we plot trend estimates
determined with the LOCFIT method [Loader, 1999, 2010] for the deviation (predicted minus observed) as a
function of the predicted value and associated approximate 95% confidence bands (Figure 7). In our imple-
mentation of LOCFIT, we fit a local polynomial of degree 0 and set the span parameter to 0.75. The confidence
bands are determined by a parametric bootstrap method [Efron and Tibshirani, 1993]. For cases A–D, the
fraction of observations for which the approximate 95% confidence bands for the trend include 0 ppm are
0.71, 1, 1, 1.

To study possible variation of model performance with season, we compare predicted and observed Cff values
for test data corresponding to (November–February) and (May–September) (Figures 8 and 9). For each case,
even though the proxy prediction model is determined from the complete model building data from all
seasons, the visual agreement between predicted and observed values for seasonal subsets is good. For
the test data, the estimated RMS deviations for the summer subset were, on average, 14% higher than the
estimated RMS deviations for the winter subset (Table 3).

3.3. Other Sources of Systematic Uncertainty
In general, if the fractional uncertainties of observations are relatively large and/or the total number of
observations is not sufficiently large, hypothesis testing may not reveal real systematic differences between
observations and model predictions. Since the uncertainties for Δ14C-based Cff measurements analyzed in
this work are typically large relative to associated individual measurement values and the range of measured
values, more data (particularly measurements corresponding to larger Cff values) may be necessary to produce
evidence for possible additional systematic uncertainties not accounted for in our current model. Below, we
discuss plausible sources of such additional uncertainty.

As stated earlier, we expect each Cff observation (Cff,obs) to have a nonzero bias (systematic error). Ideally, the
unobserved biases of Cff measurements should have a mean value close to 0 ppm and vary independently
from observation to observation. Since we have no empirical method to verify these modeling assumptions,
it is possible that the mean systematic error of any set of Cff measurements may vary from 0 ppm in a scien-
tifically significant way. To illustrate this effect, suppose that actual systematic errors for any set of measure-
ments are independent realizations of exponentially distributed random variables with theoretical mean and
standard deviation of �̂�obs,sys = 0.5 ppm. For this case, the expected bias for each measurement is 0.5 ppm.
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Figure 8. Observed Cff versus proxy model prediction of Cff for subset of test data corresponding to November through
February. (a) Case A definition of test data. (b) Case B definition of test data. (c) Case C definition of test data. (d) Case D
definition of test data. Line of equality shown in black. RMS deviations between observed Cff and predicted Cff and
associated approximate 95% confidence intervals for cases A–D are (in ppm units); 1.09 (0.90, 1.33), 1.06 (0.76, 1.45),
0.95 (0.63,1.39), and 1.23 (0.75, 2.18). Above, �̂�pred,extra =0 ppm.

This would introduce a systematic error of approximately 0.5 ppm into all proxy model predictions. Worse yet,
for such an exponential bias model, hypothesis testing could confirm that (biased) observations and (biased)
predictions are consistent. Since our goal is to construct a confidence interval for (true) Cff value rather than the
associated expected value of a biased measurement of Cff, we must consider the above effect as an additional
source of systematic uncertainty. Further, our estimate �̂�pred,tot (equation (4)) does not account for system-
atic uncertainties in measured surrogate gas in the test data due to imperfect background correction, spatial
effects due to determining one PPR model from two sites rather one PPR model for each site, systematic tem-
poral variations of surrogate gas emission rates, and systematic effects due to incomplete mixing of emissions
at measurement sites.

To account for the systematic effects above, we incorporate an additional component of uncertainty,
�̂�pred,extra= 1 ppm, into our prediction uncertainty budget. Our decision to set �̂�pred,extra= 1 ppm is based on
scientific judgment informed by an additional study (not presented here) of how variability in surrogate
gas background estimates affects predicted Cff values. Hence, our final estimate of the combined uncer-

tainty of Cff is
√

�̂�2
pred,post + �̂�2

pred,model + �̂�2
pred,extra (see Figure 6d). We note that an uncertainty budget with

�̂�pred,extra =0 ppm is sufficient to explain deviations between observed and predicted Cff values according to
hypothesis test results (Table 4). Further, any additional systematic uncertainty might vary as a function of
Cff,pred (or as a function of other quantities) contrary to our approach.

We note that the combined uncertainty for the prediction of Cff due to systematic effects is �̂�pred,sys =√
�̂�2

pred,model + �̂�2
pred,extra which is greater than �̂�obs,sys for all observations. Also, the combined uncertainty for

the prediction of Cff due to random effects is �̂�pred,post which is generally less than �̂�obs,ran (Figure 6a). For case
D, for 77 of 94 observations, the combined uncertainties (due to random and systematic effects) for Cff predic-
tions are slightly less than the uncertainty of any Δ14C-based measurement of Cff (1.1 ppm) (Figure 6d). This
phenomenon is possible because the random uncertainty of any model prediction decreases as the number
of observations nobs that the model is determined from increases. In our case the PPR model is determined
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Figure 9. Observed Cff versus proxy model prediction of Cff for subset of test data corresponding to May through
September. (a) Case A definition of test data. (b) Case B definition of test data. (c) Case C definition of test data. (d) Case
D definition of test data. Line of equality shown in black. RMS deviations between observed Cff and predicted Cff and
associated approximate 95% confidence intervals for cases A–D are (in ppm units); 1.51 (1.24, 2.03), 1.11 (0.89, 1.44),
1.15 (0.96, 1.48), and 1.13 (0.92, 1.39). Above, �̂�pred,extra = 0 ppm.

from 174 observations where each observation is a vector where one component is observed Cff and the other
components are observed surrogate gas enhancements. Hence, for our problem, if the component of predic-
tion uncertainty due to systematic effects is sufficiently small relative to 1.1 ppm and nobs is sufficiently large,
and the random uncertainty of surrogate gas enhancements that are input into the PPR prediction model
is sufficiently small, the phenomenon is plausible. Moreover, theory predicts this phenomenon for idealized
univariate regression models where there are no systematic errors [Mendenhall and Sincich, 1992]. For this
idealized case, the width of a confidence interval for the true value (predicted by the fitted regression line)
shrinks toward 0 as the number of data points that the regression model is determined from increases without
limit. Further, theory predicts wider confidence intervals for extreme observations relative to midrange
observations. In general, one expects the random uncertainty of any prediction model (including our PPR
proxy model prediction) to be larger for extreme observations relative to midrange observations. In Figure 6a,
the approximate j-shaped relationship between the random uncertainty of predicted Cff and predicted Cff

may result because the distribution of unobserved Cff is skewed toward lower values.

As discussed earlier, for each of the four cases of interest, we select PPR predictions models based on model
building data acquired at both sites. We expect prediction model performance to be best when model build-
ing data is acquired at the same site where we predict Cff. Moreover, prediction model performance could
vary with the time of surrogate gas measurements and depend on the time period corresponding to when
model building data is acquired. Such temporal variations could be diurnal, weekly, seasonal, or long term.
Long-term variations are highly likely because of emissions of discontinued refrigerants that change in time,
or relative emission rates that vary due to changes in industrial, technological, or energy production
processes or regulations. Hence, over sufficiently long time periods, one should recalibrate any surrogate gas
prediction model to avoid degradation of model performance. A simple form of recalibration would be to split
up the model building data into (nonoverlapping) blocks according to time. One would then determine a PPR
model for each block. We note that systematic temporal variability effects could introduce temporal trends in
deviations between predicted and observed values of Cff. However, for all four cases, when we fit linear trend
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Figure 10. Test data case B. (a) Selected surrogate gases in single proxy prediction model is CO. (b) Multivariate proxy
model includes three surrogate gases: HFC-22, C2Cl4, and C6H6. (c) Difference between single proxy and PPR prediction
models. (d) Difference between multivariate and PPR prediction models. Uncertainty intervals not shown.

models to deviations from both sites, the evidence for trends is weak. For cases A–D the estimated slopes and
associated uncertainties (in parentheses) are −0.01(0.21) ppm/yr, 0.14(0.18) ppm/yr, 0.08(0.22) ppm/yr, and
0.02(0.07) ppm/yr, respectively. Further, model performance for case C (where the PPR model is extrapolated
into the future, and model performance for case D (where the model building data in interwoven with the test
data) is similar according to RMS deviation statistics (Table 3) and p-values from hypothesis testing (Table 4).

3.4. Alternative Proxy Models
We also predict Cff with a standard linear multivariate prediction model. For all cases considered, this linear
model yields uniformly higher cross-validation statistics compared to the PPR model (see Figure 4 for an
example). For case B, where cross validation selects CO as the best surrogate gas for a single proxy linear
proxy model, the cross-validation statistics for the optimal single proxy linear model, the optimal multivariate
linear model, and the optimal PPR model are 1.33 ppm, 1.19 ppm, and 1.08 ppm, respectively. For this same
case, a single proxy model based on CO yields RMS deviation estimates (and approximate 95% confidence
interval) of 1.23(1.00, 1.53) ppm and 1.39(1.00, 2.09) ppm for the subsets corresponding to May to September
and November to February. In contrast, for the same subsets, the PPR model yields 1.11(0.89, 1.44) ppm and
1.06 (0.76, 1.45) ppm.

Although cross-validation statistics serve a critical role for selecting the optimal prediction model, they do not
provide a clear picture of how the prediction models vary with respect to one another. To get some insight into
this variation, we quantify the difference between the single proxy and multivariate models with respect to
the PPR model for the case B test data (Figure 10). The deviation between the single proxy and PPR prediction
models is most dramatic for large PPR prediction values. In general, the multivariate model prediction for Cff

is less than the PPR model prediction for cases where the PPR prediction is greater than approximately 1 ppm.

In addition to the multivariate linear and PPR prediction models, we also considered a multivariate adaptive
regression spline (MARS) model [Friedman, 1991]. According to our cross-validation criterion, the PPR model
outperformed the MARS for all cases considered. In some applications, researchers fit PPR models to trans-
formed rather than raw observations. We explored this approach by fitting a PPR model to log (𝛼 + Cff,obs)
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values where 𝛼=4 ppm. (We require a positive 𝛼 because some Cff,obs values are negative.) According to our
cross-validation criterion, this approach underperformed the approach presented in this work.

4. Summary

For each of four ways of defining test data, we selected a PPR proxy prediction model by cross validation
based on joint analysis of data from NOAA aircraft profiling sites CMA and NHA. The estimated RMS difference
between predicted and observed Cff for the test data excluded from the model building process ranged from
1.06 ppm to 1.37 ppm depending on how the test data was defined (Table 3). We also quantified prediction
uncertainty for each observation in each test data set (Figure 6). We tested the hypothesis that predicted and
observed values are consistent given their associated uncertainties (Table 4). Since evidence of systematic
deviations between observed and predicted Cff based on p-values from hypothesis tests is weak, we conclude
that development of a scientifically useful multivariate proxy prediction model for Cff is a realistic goal.

In future studies, we plan to expand Cff estimates beyond those based on Δ14C measurements, by applying
our methods to NOAA GGGRN aircraft and tower sites in the U.S. To account for spatial and temporal variations
of emission ratios, prediction models would be determined at each site. At each new site, to suppress
effects due to systematic temporal variations of surrogate gas emission rates, we currently plan to determine
PPR prediction models for contiguous 2 year long blocks of model building data. For sites that lack Δ14C
measurements, development of proxy prediction models based on local model building data is not possible.
For such cases, one might predict Cff based on proxy models developed at other sites with similar Δgas:Cff

ratios. How well such an approach would work is a research question. At many sites, we expect the range
of Cff to be larger than for the measurements analyzed in this work. For such sites, on average, we expect
lower fractional uncertainties of Δ14C-based measurements of Cff and predictions of Cff with lower fractional
uncertainties.

Additional Cff values determined from surrogate gases (Cff,pred) may facilitate a more accurate estimate of
U.S. national fossil fuel emissions determined by an atmospheric inverse approach [e.g., Basu et al., 2016]. The
utility of proxy model predictions that we plan to acquire at other sites will depend on their yet to be deter-
mined uncertainties which we expect to differ from what we determined for the NHA-CMA sites. In future
studies, we expect that high-resolution atmospheric transport modeling along with more observations from
aircraft vertical profiles and upwind sampling locations at points of continental inflow, such as the Pacific and
Gulf coasts, may yield improved determinations of background values for both Δ14C and surrogate gases.
Further, improved representation of heterotrophic respiration and nuclear reactor emissions will also help
us reduce and better characterize systematic uncertainties. Because systematic errors can never be elimi-
nated from either Cff or Δgas measurements, high precision, low bias measurements ofΔ14C remain critical for
improving determination of U.S. fossil fuel emissions based on additional proxy model preditions of Cff.

Appendix A

Below, we summarize the theoretical model for Cff and its associated empirical estimate (equation (2)) pre-
sented in Miller et al. [2012]. Following Turnbull et al. [2007], the theoretical CO2 mole fraction is modeled as due
to three sources: background, local fossil fuel emissions, and biospheric sources. This model neglects possible
effects due to emissions from nuclear power plants. Given the unobserved true values of C, Δ, Cbg, Cbio,Δbg,
and Δbio, one gets the following model equations

C = Cbg + Cff + Cbio, (A1)

and

ΔC = ΔbgCbg + ΔffCff + ΔbioCbio. (A2)

We note that equation (A2) is valid for cases where Δ is small [Vogel et al., 2013]. Since the CMA and NHA sites
are far from major sources of fossil fuel CO2 emissions, we expect negligible systematic error associated with
the equation (A2) modeling assumption. We decompose Cbio into the sum of a photosynthetic term Cphoto and
a respiratory term Cresp. Further, we assume that Δphoto = Δbg. Based on equations (A1) and (A2), we estimate
Cff as Cff,obs where

Cff,obs =
Cobs(Δobs − Δbg,obs)

Δff − Δbg,obs
−

Ĉresp(Δ̂resp − Δbg,obs)
Δff − Δbg,obs

, (A3)
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and the estimates Cobs,Δobs,Δbg,obs are determined by measurement, and the estimates Ĉresp and Δ̂resp are
determined by a synthesis of experimental measurement and computational modeling. The second term
on the right-hand side of equation (A3) is the correction term, Ĉcor, that appears in equation (2). This term
typically takes values in the range 0.4 ppm to 0.8 ppm during the summer and 0.2 ppm to 0.3 ppm during
the winter [Lehman et al., 2013].

Appendix B

In this work, we report estimates of theoretical (true) root-mean-square (RMS) deviations between measured
and predicted Cff and associated confidence intervals for the unknown theoretical RMS deviation. Since mea-
sured Cff is a function of isotopic ratio measurements, the “true” RMS deviation is undefined if one assumes
that the minor and major isotope measurements are realizations of Poisson random variables. This is so
because the expected value of the ratio of two Poisson random variables is infinite [Coakley et al., 2005; Coath
et al., 2013]. To ensure that true RMS deviation is well defined and reported confidence intervals for Cff are
sensible, we restrict analysis to the subsample of Cff measurements where denominator terms in isotopic ratios
are positive and Δbg,obs ≠ Δff. Our subsampling restriction also ensures that the expected value and theoret-
ical standard deviation of Cff,obs are well defined. For Cff studies, this subsampling restriction has no practical
effect on data acquisition since the probability that a Cff measurement falls outside the subsample where the
true RMS deviation is defined is negligible.

Appendix C

The PPR model prediction for Cff values in the test data depends on input surrogate gas measurements in the
test data, ST , and the model building data DM that determines the PPR model. Each observation in the model
building data is a vector of dimension K+1 where one component is a Cff,obs value and the other K components
are surrogate gases. Suppose we write the PPR prediction for the ith observation in the test data as

Cff,pred(i) = f (DM, ST (i)), (C1)

where f denotes the PPR model. To get �̂�pred,post our bootstrap method simultaneously resamples DM and ST (i)
by nonparametric and parametric bootstrap methods, respectively. The nonparametric bootstrap resampling
scheme for DM accounts for observation-to-observation variation of systematic measurement errors and
random uncertainties in both Cff and surrogate gas measurements. The parametric bootstrap resampling
scheme for ST (i) accounts for random uncertainties but not observation-to-observation variation of sys-
tematic measurement errors. Our method does not account for the possibility that the mean systematic
measurement error over all observations may not be 0 ppm. This additional uncertainty is accounted for with
a method described in section 3.3.

References
Anderson, E. C., W. F. Libby, S. Weinhouse, A. F. Reid, A. D. Kirshenbaum, and A. V. Grosse (1947), Natural radiocarbon from cosmic radiation,

Phys. Rev., 72, 931–936.
Andrews, A. E., et al. (2014), CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global

Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse
gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687.

Arlot, S., and A. Celisse (2010), A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40–79.
Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White (2012), Increase in observed net carbon dioxide uptake by land and

oceans during the past 50 years, Nature, 488(7409), 70–72.
Basu, S., J. B. Miller, and S. Lehman (2016), Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2

measurements: Observation System Simulations, Atmos. Chem. Phys. Discuss., 2016, 1–34.
Boden, T. A., G. Marland, and R. J. Andres (2014), Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information

Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., doi:10.3334/CDIAC/00001_V2014.
Burnham, K. P, and D. R. Anderson (2002), Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd ed.,

Springer-Verlag, New York.
Canadell, J. G., C. Le Quere, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland (2007),

Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks,
Proc. Natl. Acad. Sci. U.S.A., 104(47), 18,866–18,870, doi:10.1073/pnas.0702737104.

Claeskens, G., and N. L. Hjort (2008), Model Selection and Model Averaging, Cambridge Univ. Press, New York.
Coakley, K. J., D. S. Simons, and A. M. Leifer (2005), Secondary ion mass spectrometry measurements of isotopic ratios: Correction for time

varying count rate, Int. J. Mass Spectrom., 240(2), 107–120.
Coath, C. D., R. C. J Steele, and W. Fred Lunnon (2013), Statistical bias in isotope ratios, J. Anal. At. Spectrom., 28(1), 52–58.

Acknowledgments
We thank A. Possolo, A. Pintar,
D. Samarov, and J.C. Turnbull for their
helpful comments, the NOAA Climate
Program OfficeAC4 for funding the
research that produced the measure-
ments analyzed here, and C. Siso,
A. Karion, and others from NOAA
and CIRES for technical and logistical
contributions related to sampling and
analysis of flasks. Contributions to this
work by staff of NIST (an agency of
the U.S. government) are not subject
to copyright in the U.S. and represent
an execution of the NIST Greenhouse
Gas and Climate Science Measurements
Program (Special Programs Office,
Associate Director for Laboratory
Programs, NIST, U.S. Department
of Commerce). Data and software
scripts are available in the supporting
information.

COAKLEY ET AL. PROXY PREDICTION MODEL 7504

http://dx.doi.org/10.3334/CDIAC/00001_V2014
http://dx.doi.org/10.1073/pnas.0702737104


Journal of Geophysical Research: Atmospheres 10.1002/2015JD024715

Committee on Methods for Estimating Greenhouse Gas Emissions; National Research Council (2010), Verifying Greenhouse Gas Emissions:
Methods to Support International Climate Agreements, The Natl. Acad. Press, Washington, D. C.

Craven, P., and G. Wahba (1979), Smoothing noisy data with spline functions, Numer. Math., 31, 377–403.
Diaconis, P., and M. Shahshahani (1984), On non-linear functions of linear combinations, SIAM J. Sci. Stat. Comput., 5(1), 175–191.
Efron, B., and R. J. Tibshirani (1993), An Introduction to the Bootstrap, Monographs and Statistics and Applied Probability 57, CRC Press,

New York.
Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan (1996), Natural and anthropogenic changes in

atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101(D2), 4115–4128.
Friedman, J. H. (1984), A variable span smoother, Rep. LCS 05, Dep. of Stat. at Stanford Univ., Stanford, Calif.
Friedman, J. H. (1991), Multivariate adaptive regression splines (with discussion), Ann. Stat., 19(1), 1–141.
Friedman, J. H., and W. Stuetzle (1981), Projection pursuit regression, J. Am. Stat. Assoc., 76(376), 817–823,

doi:10.1080/01621459.1981.10477729.
Graven, H. D., and N. Gruber (2011), Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: Potential impact

on the estimation of fossil fuel-derived CO2, Atmos. Chem. Phys., 11(23), 12,339–12,349.
Gurney, K. R., D. L. Mendoza, Y. Zhou, M. L. Fischer, C. C. Miller, S. Geethakumar, and S. de la Rue du Can (2009), High resolution fossil fuel

combustion CO2 emission fluxes for the United States, Environ. Sci. Technol., 43(14), 5535–5541.
Hastie, T., R. Tibshirani, and J. H. Friedman (2008), The Elements of Statistical Learning, 2nd ed., Springer-Verlag, New York.
Hoeting, J. A., D. Madigan, A. E. Raferty, and C. T. Volinsky (1999), Bayesian model averaging: A tutorial, Stat. Sci., 14, 382–417.
Hjort, N. L, and G. Claeskens (2003), Frequentist model average estimators, J. Am. Stat. Assoc., 98(464), 879–899.
Knorr, W. (2009), Is the airborne fraction of anthropogenic CO2 emissions increasing?, Geophys. Res. Lett., 36, L21710,

doi:10.1029/2009GL040613.
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